Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Sci Rep ; 14(1): 8893, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632459

RESUMO

Here, this study reports single-band red upconversion emission in ß-Ba2ScAlO5: Yb3+/Er3+ phosphor by doping Mn2+. The optimum concentration of Mn2+ ions in ß-Ba2ScAlO5: Yb3+/Er3+ phosphor was 0.20. The intensity of red and green emissions is increased by 27.4 and 19.3 times, respectively. Compared with the samples without Mn2+ ions, the red-green integral strength ratio of ß-Ba2ScAlO5: Yb3+/Er3+/Mn2+ sample was significantly increased by 28.4 times, reaching 110.9. The UCL mechanism was explored by analyzing the down-conversion luminescence spectra, absorption spectra, UCL spectra, and upconversion fluorescence lifetime decay curves of Yb3+/Er3+/Mn2+ co-doped ß-Ba2ScAlO5. The enhancement of upconversion red light is achieved through energy transfer between defect bands and Er3+ ions, as well as energy transfer between Mn2+ ions and Er3+ ions. In addition, the Mn2+ doped ß-Ba2ScAlO5: Yb3+/Er3+ red UCL phosphors have great potential for ambient temperature sensing in the 298-523 K temperature range. The maximum sensitivity of ß-Ba2ScAlO5: Yb3+/Er3+/Mn2+ phosphor as a temperature sensor at 523 K is 0.0247 K-1.

2.
Pestic Biochem Physiol ; 200: 105835, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582597

RESUMO

Octanal was found to be able to reduce green mold incidence in citrus fruit by a defense response mechanism. However, the underlying mechanism remains largely unclear. Herein, the metabolomics, RNA-seq and biochemical analyses were integrated to explore the effect of octanal on disease resistance in harvested citrus fruit. Results showed that octanal fumigation at 40 µL L-1 was effective in controlling citrus green mold. Metabolomics analysis showed that octanal mainly led to the accumulation of some plant hormones including methyl jasmonate, abscisic acid, indole-3-butyric acid, indoleacetic acid (IAA), salicylic acid, and gibberellic acid and many phenylpropanoid metabolites including cinnamyl alcohol, hesperidin, dihydrokaempferol, vanillin, quercetin-3-O-malonylglucoside, curcumin, naringin, chrysin, coniferin, calycosin-7-O-ß-D-glucoside, trans-cinnamaldehyde, and 4',5,7-trihydroxy-3,6-dimethoxyflavone. Particularly, IAA and hesperidin were dramatically accumulated in the peel, which might be the contributors to the resistance response. Additionally, transcriptome analysis showed that octanal greatly activated the biosynthesis and metabolism of aromatic amino acids. This was further verified by the accumulation of some metabolites (shikimic acid, tryptophan, tyrosine, phenylalanine, IAA, total phenolics, flavonoids and lignin), increase in some enzyme activities (phenylalanine ammonia-lyase, tyrosine ammonia-lyase, 4-coumarate CoA ligase, cinnamic acid 4-hydroxylase, polyphenol oxidase, and peroxidase), up-regulation of some genes (tryptophan pyruvate aminotransferase, aldehyde dehydrogenase, shikimate kinase and shikimate dehydrogenase) expressions and molecular docking results. Thus, these results indicate that octanal is an efficient strategy for the control of postharvest green mold by triggering the defense response in citrus fruit.


Assuntos
Aldeídos , Citrus , Hesperidina , Citrus/química , Citrus/genética , Citrus/metabolismo , Aminoácidos Aromáticos/metabolismo , Resistência à Doença , Hesperidina/análise , Hesperidina/metabolismo , Hesperidina/farmacologia , Triptofano/metabolismo , Simulação de Acoplamento Molecular , Frutas
3.
Polymers (Basel) ; 16(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38475308

RESUMO

Recent studies have shown that astronauts experience altered immune response behavior during spaceflight, resulting in heightened susceptibility to illness. Resources and resupply shuttles will become scarcer with longer duration spaceflight, limiting access to potentially necessary medical treatment and facilities. Thus, there is a need for preventative health countermeasures that can exploit in situ resource utilization technologies during spaceflight, such as additive manufacturing (i.e., 3D printing). The purpose of the current study was to test and validate recyclable antimicrobial materials compatible with additive manufacturing. Antimicrobial poly(lactic acid)- and polyurethane-based materials compatible with 3D printing were assessed for antimicrobial, mechanical, and chemical characteristics before and after one closed-loop recycling cycle. Our results show high biocidal efficacy (>90%) of both poly(lactic acid) and polyurethane materials while retaining efficacy post recycling, except for recycled-state polyurethane which dropped from 98.91% to 0% efficacy post 1-year accelerated aging. Significant differences in tensile and compression characteristics were observed post recycling, although no significant changes to functional chemical groups were found. Proof-of-concept medical devices developed show the potential for the on-demand manufacturing and recyclability of typically single-use medical devices using antimicrobial materials that could serve as preventative health countermeasures for immunocompromised populations, such as astronauts during spaceflight.

4.
Ren Fail ; 46(1): 2321320, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38482569

RESUMO

BACKGROUND: Hemodialysis (HD) and peritoneal dialysis (PD) are effective ways to treat end-stage renal disease (ERSD). This study aimed to investigate the differences in survival and the factors that influence it in patients with end-stage renal disease treated with HD or PD. METHODS: We retrospectively analyzed factors related to all-cause death with renal replacement therapy and compared the long-term mortality between HD and PD strategies in patients with ESRD who started HD or PD treatment in our renal HD center between January 1, 2008, and December 1, 2021. RESULTS: Overall, 1,319 patients were included, comprising 690 and 629 patients in the HD and PD groups, respectively, according to the inclusion criteria. After propensity matching, 922 patients remained, with 461 (50%) patients each in the two groups. There were no significant differences in the 1-, 2-, 3-, and 4-year mortality rates between the HD and PD groups (all p > .05). However, the 5- and 10-year mortality rates of the matched patients were 15.8%. 17.6% in the HD group and 21.0%. 27.3% in the PD group, respectively. The 5- and 10-year mortality rates were significantly lower in the HD group (all p < .05) as compared to the PD group. After matching, Kaplan-Meier curve analysis with log-rank test was performed, which showed a significant difference in the survival rates between the two groups (p = .001). Logistic multifactor regression analysis revealed that age, weight, hypertension, serum creatinine, and combined neoplasms influenced the survival rate of patients with ESRD (p < .05). In contrast, age, hypertension, parathyroid hormone (PTH), serum creatinine, and peripheral vascular diseases (PVD) influenced the survival rate of patients in the HD group (p < .05), and age and weight influenced the survival rate of patients in the PD group (p < .05). CONCLUSIONS: This study found that long-term mortality rates were higher in the PD group than that in the HD group, indicating that HD may be superior to PD.


Assuntos
Hipertensão , Falência Renal Crônica , Diálise Peritoneal , Humanos , Estudos Retrospectivos , Pontuação de Propensão , Creatinina , Diálise Renal , Diálise Peritoneal/efeitos adversos , Hipertensão/etiologia , Modelos de Riscos Proporcionais
5.
Genome Biol ; 25(1): 73, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504325

RESUMO

With the rapid advancements in spatial transcriptome sequencing, multiple tissue slices are now available, enabling the integration and interpretation of spatial cellular landscapes. Herein, we introduce SpaDo, a tool for multi-slice spatial domain analysis, including modules for multi-slice spatial domain detection, reference-based annotation, and multiple slice clustering at both single-cell and spot resolutions. We demonstrate SpaDo's effectiveness with over 40 multi-slice spatial transcriptome datasets from 7 sequencing platforms. Our findings highlight SpaDo's potential to reveal novel biological insights in multi-slice spatial transcriptomes.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Análise Espacial , Análise por Conglomerados , Análise de Célula Única
6.
Proc Natl Acad Sci U S A ; 121(9): e2313464121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38346211

RESUMO

Creating tissue and organ equivalents with intricate architectures and multiscale functional feature sizes is the first step toward the reconstruction of transplantable human tissues and organs. Existing embedded ink writing approaches are limited by achievable feature sizes ranging from hundreds of microns to tens of millimeters, which hinders their ability to accurately duplicate structures found in various human tissues and organs. In this study, a multiscale embedded printing (MSEP) strategy is developed, in which a stimuli-responsive yield-stress fluid is applied to facilitate the printing process. A dynamic layer height control method is developed to print the cornea with a smooth surface on the order of microns, which can effectively overcome the layered morphology in conventional extrusion-based three-dimensional bioprinting methods. Since the support bath is sensitive to temperature change, it can be easily removed after printing by tuning the ambient temperature, which facilitates the fabrication of human eyeballs with optic nerves and aortic heart valves with overhanging leaflets on the order of a few millimeters. The thermosensitivity of the support bath also enables the reconstruction of the full-scale human heart on the order of tens of centimeters by on-demand adding support bath materials during printing. The proposed MSEP demonstrates broader printable functional feature sizes ranging from microns to centimeters, providing a viable and reliable technical solution for tissue and organ printing in the future.


Assuntos
Bioimpressão , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Córnea , Bioimpressão/métodos , Impressão Tridimensional , Tecidos Suporte/química , Hidrogéis/química
7.
ACS Nano ; 18(10): 7580-7595, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38422400

RESUMO

The lack of both digital light processing (DLP) compatible and biocompatible photopolymers, along with inappropriate material properties required for wearable sensor applications, substantially hinders the employment of DLP 3D printing in the fabrication of multifunctional hydrogels. Herein, we discovered and implemented a photoreactive poloxamer derivative, Pluronic F-127 diacrylate, which overcomes these limitations and is optimized to achieve DLP 3D printed micelle-based hydrogels with high structural complexity, resolution, and precision. In addition, the dehydrated hydrogels exhibit a shape-memory effect and are conformally attached to the geometry of the detection point after rehydration, which implies the 4D printing characteristic of the fabrication process and is beneficial for the storage and application of the device. The excellent cytocompatibility and in vivo biocompatibility further strengthen the potential application of the poloxamer micelle-based hydrogels as a platform for multifunctional wearable systems. After processing them with a lithium chloride (LiCl) solution, multifunctional conductive ionic hydrogels with antifreezing and antiswelling properties along with good transparency and water retention are easily prepared. As capacitive flexible sensors, the DLP 3D printed micelle-based hydrogel devices exhibit excellent sensitivity, cycling stability, and durability in detecting multimodal deformations. Moreover, the DLP 3D printed conductive hydrogels are successfully applied as real-time human motion and tactile sensors with satisfactory sensing performances even in a -20 °C low-temperature environment.


Assuntos
Micelas , Dispositivos Eletrônicos Vestíveis , Humanos , Poloxâmero , Condutividade Elétrica , Hidrogéis , Impressão Tridimensional
8.
J Control Release ; 368: 24-41, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367864

RESUMO

Peripheral nerve injury (PNI) and the limitations of current treatments often result in incomplete sensory and motor function recovery, which significantly impact the patient's quality of life. While exosomes (Exo) derived from stem cells and Schwann cells have shown promise on promoting PNI repair following systemic administration or intraneural injection, achieving effective local and sustained Exo delivery holds promise to treat local PNI and remains challenging. In this study, we developed Exo-loaded decellularized porcine nerve hydrogels (DNH) for PNI repair. We successfully isolated Exo from differentiated human adipose-derived mesenchymal stem cells (hADMSC) with a Schwann cell-like phenotype (denoted as dExo). These dExo were further combined with polyethylenimine (PEI), and DNH to create polyplex hydrogels (dExo-loaded pDNH). At a PEI content of 0.1%, pDNH showed cytocompatibility for hADMSCs and supported neurite outgrowth of dorsal root ganglions. The sustained release of dExos from dExo-loaded pDNH persisted for at least 21 days both in vitro and in vivo. When applied around injured nerves in a mouse sciatic nerve crush injury model, the dExo-loaded pDNH group significantly improved sensory and motor function recovery and enhanced remyelination compared to dExo and pDNH only groups, highlighting the synergistic regenerative effects. Interestingly, we observed a negative correlation between the number of colony-stimulating factor-1 receptor (CSF-1R) positive cells and the extent of PNI regeneration at the 21-day post-surgery stage. Subsequent in vitro experiments demonstrated the potential involvement of the CSF-1/CSF-1R axis in Schwann cells and macrophage interaction, with dExo effectively downregulating CSF-1/CSF-1R signaling.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Traumatismos dos Nervos Periféricos , Camundongos , Humanos , Suínos , Animais , Fator Estimulador de Colônias de Macrófagos , Hidrogéis , Qualidade de Vida , Regeneração Nervosa , Nervo Isquiático/lesões , Células de Schwann , Traumatismos dos Nervos Periféricos/terapia
9.
ACS Appl Mater Interfaces ; 16(2): 1985-1998, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38175743

RESUMO

Myocardial infarction (MI) is one of the leading causes of death in the developed world, and the loss of cardiomyocytes plays a critical role in the pathogenesis of heart failure. Implicated in this process is a decrease in gap junction intercellular communication due to remodeling of Connexin43 (Cx43). We previously identified that intraperitoneal injection of the Pyk2 inhibitor PF4618433 reduced infarct size, maintained Cx43 at the intercalated disc in left ventricle hypertrophic myocytes, and improved cardiac function in an MI animal model of heart failure. With the emergence of injectable hydrogels as a therapeutic toward the regeneration of cardiac tissue after MI, here, we provide proof of concept that the release of tyrosine kinase inhibitors from hydrogels could have beneficial effects on cardiomyocytes. We developed an injectable hydrogel consisting of thiolated hyaluronic acid and P123-maleimide micelles that can incorporate PF4618433 as well as the Src inhibitor Saracatinib and achieved sustained release (of note, Src activates Pyk2). Using neonatal rat ventricular myocytes in the presence of a phorbol ester, endothelin-1, or phenylephrine to stimulate cardiac hypertrophy, the release of PF4618433 from the hydrogel had the same ability to decrease Cx43 tyrosine phosphorylation and maintain Cx43 localization at the plasma membrane as when directly added to the growth media. Additional beneficial effects included decreases in apoptosis, the hypertrophic marker atrial natriuretic peptide (ANP), and serine kinases upregulated in hypertrophy. Finally, the presence of both PF4618433 and Saracatinib further decreased the level of ANP and apoptosis than each inhibitor alone, suggesting that a combinatorial approach may be most beneficial. These findings provide the groundwork to test if tyrosine kinase inhibitor release from hydrogels will have a beneficial effect in an animal model of MI-induced heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Ratos , Animais , Conexina 43/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/patologia , Fosforilação , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Comunicação Celular
10.
Pharmaceutics ; 16(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38258111

RESUMO

The administration of therapeutics to peripheral nerve tissue is challenging due to the complexities of peripheral neuroanatomy and the limitations imposed by the blood-nerve barrier (BNB). Therefore, there is a pressing need to enhance delivery effectiveness and implement targeted delivery methods. Recently, erythrocyte-derived exosomes (Exos) have gained widespread attention as biocompatible vehicles for therapeutics in clinical applications. However, engineering targeted Exos for the peripheral nervous system (PNS) is still challenging. This study aims to develop a targeted Exo delivery system specifically designed for presynaptic terminals of peripheral nerve tissue. The clostridium neurotoxin, tetanus toxin-C fragment (TTC), was tethered to the surface of red blood cell (RBC)-derived Exos via a facile and efficient bio-orthogonal click chemistry method without a catalyst. Additionally, Cyanine5 (Cy5), a reactive fluorescent tag, was also conjugated to track Exo movement in both in vitro and in vivo models. Subsequently, Neuro-2a, a mouse neuronal cell line, was treated with dye-labeled Exos with/without TTC in vitro, and the results indicated that TTC-Exos exhibited more efficient accumulation along the soma and axonal circumference, compared to their unmodified counterparts. Further investigation, using a mouse model, revealed that within 72 h of intramuscular administration, engineered TTC-Exos were successfully transported into the neuromuscular junction and sciatic nerve tissues. These results indicated that TTC played a crucial role in the Exo delivery system, improving the affinity to peripheral nerves. These promising results underscore the potential of using targeted Exo carriers to deliver therapeutics for treating peripheral neuropathies.

11.
Neuroreport ; 35(1): 42-48, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37994631

RESUMO

Brain age prediction as well as the prediction difference has been well examined to be a potential biomarker for brain disease or abnormal aging process. However, less knowledge was reported for the cognitive association within normal population. In this study, we proposed a novel approach to brain age prediction by structure-decoupled functional connectome. The original functional connectome was decomposed and decoupled into a structure-decoupled functional connectome using structural connectome harmonics. Our method was applied to a large dataset of normal aging individuals and achieved a high correlation between predicted and chronological age (r = 0.77). Both the original FC and structure-decoupled FC could be well-trained in a brain age prediction model. Significant remarkable relationships between the brain age prediction difference (predicted age minus chronological age) and cognitive scores were discovered. However, the brain age-predicted difference driven by structure-decoupled FC showed a stronger correction to the two cognitive scores (MMSE: r = -0.27, P -value = 0.002; MoCA: r = -0.32, P -value = 0.0003). Our findings suggest that our structure-decoupled functional connectivity approach could provide a more individual-specific functional network, leading to improved brain age prediction performance and a better understanding of cognitive decline in aging.


Assuntos
Conectoma , Humanos , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Cognição , Envelhecimento
12.
Genome Med ; 15(1): 105, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041202

RESUMO

BACKGROUND: The precise characterization of individual tumors and immune microenvironments using transcriptome sequencing has provided a great opportunity for successful personalized cancer treatment. However, the cancer treatment response is often characterized by in vitro assays or bulk transcriptomes that neglect the heterogeneity of malignant tumors in vivo and the immune microenvironment, motivating the need to use single-cell transcriptomes for personalized cancer treatment. METHODS: Here, we present comboSC, a computational proof-of-concept study to explore the feasibility of personalized cancer combination therapy optimization using single-cell transcriptomes. ComboSC provides a workable solution to stratify individual patient samples based on quantitative evaluation of their personalized immune microenvironment with single-cell RNA sequencing and maximize the translational potential of in vitro cellular response to unify the identification of synergistic drug/small molecule combinations or small molecules that can be paired with immune checkpoint inhibitors to boost immunotherapy from a large collection of small molecules and drugs, and finally prioritize them for personalized clinical use based on bipartition graph optimization. RESULTS: We apply comboSC to publicly available 119 single-cell transcriptome data from a comprehensive set of 119 tumor samples from 15 cancer types and validate the predicted drug combination with literature evidence, mining clinical trial data, perturbation of patient-derived cell line data, and finally in-vivo samples. CONCLUSIONS: Overall, comboSC provides a feasible and one-stop computational prototype and a proof-of-concept study to predict potential drug combinations for further experimental validation and clinical usage using the single-cell transcriptome, which will facilitate and accelerate personalized tumor treatment by reducing screening time from a large drug combination space and saving valuable treatment time for individual patients. A user-friendly web server of comboSC for both clinical and research users is available at www.combosc.top . The source code is also available on GitHub at https://github.com/bm2-lab/comboSC .


Assuntos
Neoplasias , Transcriptoma , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Terapia Combinada , Software , Combinação de Medicamentos , Microambiente Tumoral , Análise de Célula Única
13.
Adv Funct Mater ; 33(35)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-38131003

RESUMO

Porous alginate hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell-friendly approach to generate highly porous cell-laden alginate hydrogels based on two-phase aqueous emulsions is reported. The pre-gel solutions, which contain two immiscible aqueous phases of alginate and caseinate, are crosslinked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the caseinate phase from the ion-crosslinked alginate hydrogel. Those porous alginate hydrogels possess heterogeneous pores around 100 µm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self-organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non-porous constructs. As a proof of concept, this porous alginate hydrogel platform is employed to prepare core-shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous-structured alginate hydrogels for applications as cell carriers and in disease modeling.

14.
Pestic Biochem Physiol ; 194: 105501, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532321

RESUMO

The volatility of essential oils greatly limits their industrial applications. Here, we successfully prepared γ-cyclodextrin (γ-CD) inclusion compounds (γ-CDTL) containing thymol (TL) for the control of green mold caused by Penicillium digitatum (P. digitatum) in citrus fruit. In vitro experiment showed that the minimum fungicidal concentration (MFC) of γ-CDTL against the hyphae growth of P. digitatum was 2.0 g/L, and 8 × MFC treatment significantly reduced the occurrence of green mold in citrus fruit and had no adverse effect on fruit quality in vivo test compared to prochloraz. Scanning electron microscopy (SEM), x-ray diffraction (XRD), fourier transform-infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), physical properties and sustained release properties were also performed, results indicated that the hydrogen bonds between TL and γ-CD were the basis for the formation of γ-CDTL. We further investigated the inhibition mechanism of γ-CDTL. SEM and TEM experiments showed that γ-CDTL treatment caused severe damage to the hyphal morphology and cells in 30 min and disrupted the permeability of P. digitatum mycelial cell walls by increasing the chitinase activity, thus accelerating the leakage of intracellular lysates. However, the integrity of the cell membrane was obviously damaged only after 60 min of treatment. In conclusion, we prepared a novel inclusion complex γ-CDTL with obvious antifungal effects and preliminarily elucidated its inclusion mechanism and antifungal mechanism. γ-CDTL might be a potent alternative to chemical fungicides for controlling the postharvest decay of citrus.


Assuntos
Citrus , Fungicidas Industriais , Penicillium , gama-Ciclodextrinas , Timol/farmacologia , Antifúngicos/farmacologia , Citrus/química , Citrus/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier , gama-Ciclodextrinas/análise , gama-Ciclodextrinas/farmacologia , Fungicidas Industriais/farmacologia , Frutas/microbiologia , Doenças das Plantas/microbiologia
15.
Acta Biomater ; 168: 78-112, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37516417

RESUMO

As one of the long-established and necessary medical devices, surgical sutures play an essentially important role in the closing and healing of damaged tissues and organs postoperatively. The recent advances in multiple disciplines, like materials science, engineering technology, and biomedicine, have facilitated the generation of various innovative surgical sutures with humanization and multi-functionalization. For instance, the application of numerous absorbable materials is assuredly a marvelous progression in terms of surgical sutures. Moreover, some fantastic results from recent laboratory research cannot be ignored either, ranging from the fiber generation to the suture structure, as well as the suture modification, functionalization, and even intellectualization. In this review, the suture materials, including natural or synthetic polymers, absorbable or non-absorbable polymers, and metal materials, were first introduced, and then their advantages and disadvantages were summarized. Then we introduced and discussed various fiber fabrication strategies for the production of surgical sutures. Noticeably, advanced nanofiber generation strategies were highlighted. This review further summarized a wide and diverse variety of suture structures and further discussed their different features. After that, we covered the advanced design and development of surgical sutures with multiple functionalizations, which mainly included surface coating technologies and direct drug-loading technologies. Meanwhile, the review highlighted some smart and intelligent sutures that can monitor the wound status in a real-time manner and provide on-demand therapies accordingly. Furthermore, some representative commercial sutures were also introduced and summarized. At the end of this review, we discussed the challenges and future prospects in the field of surgical sutures in depth. This review aims to provide a meaningful reference and guidance for the future design and fabrication of innovative surgical sutures. STATEMENT OF SIGNIFICANCE: This review article introduces the recent advances of surgical sutures, including material selection, fiber morphology, suture structure and construction, as well as suture modification, functionalization, and even intellectualization. Importantly, some innovative strategies for the construction of multifunctional sutures with predetermined biological properties are highlighted. Moreover, some important commercial suture products are systematically summarized and compared. This review also discusses the challenges and future prospects of advanced sutures in a deep manner. In all, this review is expected to arouse great interest from a broad group of readers in the fields of multifunctional biomaterials and regenerative medicine.


Assuntos
Materiais Biocompatíveis , Medicina Regenerativa , Materiais Biocompatíveis/química , Cicatrização , Suturas , Polímeros/química , Técnicas de Sutura
16.
Adv Healthc Mater ; 12(26): e2300905, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37422447

RESUMO

Bioinks for 3D bioprinting of tumor models should not only meet printability requirements but also accurately maintain and support phenotypes of tumor surrounding cells to recapitulate key tumor hallmarks. Collagen is a major extracellular matrix protein for solid tumors, but low viscosity of collagen solution has made 3D bioprinted cancer models challenging. This work produces embedded, bioprinted breast cancer cells and tumor organoid models using low-concentration collagen I based bioinks. The biocompatible and physically crosslinked silk fibroin hydrogel is used to generate the support bath for the embedded 3D printing. The composition of the collagen I based bioink is optimized with a thermoresponsive hyaluronic acid-based polymer to maintain the phenotypes of both the noninvasive epithelial and invasive breast cancer cells, as well as cancer-associated fibroblasts. Mouse breast tumor organoids are bioprinted using optimized collagen bioink to mimic in vivo tumor morphology. A vascularized tumor model is also created using a similar strategy, with significantly enhanced vasculature formation under hypoxia. This study shows the great potential of embedded bioprinted breast tumor models utilizing a low-concentration collagen-based bioink for advancing the understanding of tumor cell biology and facilitating drug discovery research.


Assuntos
Bioimpressão , Animais , Camundongos , Organoides/metabolismo , Hidrogéis/metabolismo , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Impressão Tridimensional , Engenharia Tecidual , Tecidos Suporte
17.
Opt Express ; 31(13): 20955-20964, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381207

RESUMO

By designing a liquid crystal cell with comb electrode structure, the alignment modulation of nematic liquid crystal in the cell can be realized after the electric field is applied. In different orientation regions, the incident laser beam can deflect at different angles. At the same time, by changing the incident angle of the laser beam, the reflection modulation of the laser beam on the interface of the liquid crystal molecular orientation change can be realized. Based on the above discussion, we then demonstrate the modulation of liquid crystal molecular orientation arrays on nematicon pairs. In different orientation regions of liquid crystal molecules, nematicon pairs can exhibit various combinations of deflections, and these deflection angles are modulable under external fields. Deflection and modulation of nematicon pairs have potential applications in optical routing and optical communication.

18.
J Immunol ; 211(3): 414-428, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314520

RESUMO

Staphylococcus aureus is a common cause of surgical-site infections, including those arising after craniotomy, which is performed to access the brain for the treatment of tumors, epilepsy, or hemorrhage. Craniotomy infection is characterized by complex spatial and temporal dynamics of leukocyte recruitment and microglial activation. We recently identified unique transcriptional profiles of these immune populations during S. aureus craniotomy infection. Epigenetic processes allow rapid and reversible control over gene transcription; however, little is known about how epigenetic pathways influence immunity to live S. aureus. An epigenetic compound library screen identified bromodomain and extraterminal domain-containing (BET) proteins and histone deacetylases (HDACs) as critical for regulating TNF, IL-6, IL-10, and CCL2 production by primary mouse microglia, macrophages, neutrophils, and granulocytic myeloid-derived suppressor cells in response to live S. aureus. Class I HDACs (c1HDACs) were increased in these cell types in vitro and in vivo during acute disease in a mouse model of S. aureus craniotomy infection. However, substantial reductions in c1HDACs were observed during chronic infection, highlighting temporal regulation and the importance of the tissue microenvironment for dictating c1HDAC expression. Microparticle delivery of HDAC and BET inhibitors in vivo caused widespread decreases in inflammatory mediator production, which significantly increased bacterial burden in the brain, galea, and bone flap. These findings identify histone acetylation as an important mechanism for regulating cytokine and chemokine production across diverse immune cell lineages that is critical for bacterial containment. Accordingly, aberrant epigenetic regulation may be important for promoting S. aureus persistence during craniotomy infection.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Camundongos , Epigênese Genética , Citocinas/metabolismo , Craniotomia , Leucócitos/metabolismo , Mediadores da Inflamação
19.
J Neuroinflammation ; 20(1): 114, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179295

RESUMO

BACKGROUND: Treatment of brain tumors, epilepsy, or hemodynamic abnormalities requires a craniotomy to access the brain. Nearly 1 million craniotomies are performed in the US annually, which increase to ~ 14 million worldwide and despite prophylaxis, infectious complications after craniotomy range from 1 to 3%. Approximately half are caused by Staphylococcus aureus (S. aureus), which forms a biofilm on the bone flap that is recalcitrant to antibiotics and immune-mediated clearance. However, the mechanisms responsible for the persistence of craniotomy infection remain largely unknown. The current study examined the role of IL-10 in promoting bacterial survival. METHODS: A mouse model of S. aureus craniotomy infection was used with wild type (WT), IL-10 knockout (KO), and IL-10 conditional KO mice where IL-10 was absent in microglia and monocytes/macrophages (CX3CR1CreIL-10 fl/fl) or neutrophils and granulocytic myeloid-derived suppressor cells (G-MDSCs; Mrp8CreIL-10 fl/fl), the major immune cell populations in the infected brain vs. subcutaneous galea, respectively. Mice were examined at various intervals post-infection to quantify bacterial burden, leukocyte recruitment, and inflammatory mediator production in the brain and galea to assess the role of IL-10 in craniotomy persistence. In addition, the role of G-MDSC-derived IL-10 on neutrophil activity was examined. RESULTS: Granulocytes (neutrophils and G-MDSCs) were the major producers of IL-10 during craniotomy infection. Bacterial burden was significantly reduced in IL-10 KO mice in the brain and galea at day 14 post-infection compared to WT animals, concomitant with increased CD4+ and γδ T cell recruitment and cytokine/chemokine production, indicative of a heightened proinflammatory response. S. aureus burden was reduced in Mrp8CreIL-10 fl/fl but not CX3CR1CreIL-10 fl/fl mice that was reversed following treatment with exogenous IL-10, suggesting that granulocyte-derived IL-10 was important for promoting S. aureus craniotomy infection. This was likely due, in part, to IL-10 production by G-MDSCs that inhibited neutrophil bactericidal activity and TNF production. CONCLUSION: Collectively, these findings reveal a novel role for granulocyte-derived IL-10 in suppressing S. aureus clearance during craniotomy infection, which is one mechanism to account for biofilm persistence.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Camundongos , Interleucina-10 , Neutrófilos/patologia , Craniotomia/efeitos adversos , Camundongos Knockout , Camundongos Endogâmicos C57BL
20.
J Control Release ; 357: 319-332, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028453

RESUMO

Patients with peripheral nerve injuries would highly likely suffer from chronic neuropathic pain even after surgical intervention. The primary reasons for this involve sustained neuroinflammatory and dysfunctional changes in the nervous system after the nerve injury. We previously reported an injectable boronic ester-based hydrogel with inherent antioxidative and nerve protective properties. Herein, we first explored the anti-neuroinflammatory effects of Curcumin on primary sensory neurons and activated macrophages in vitro. Next, we incorporated thiolated Curcumin-Pluronic F-127 micelles (Cur-M) into our boronic ester-based hydrogel to develop an injectable hydrogel that serves as sustained curcumin release system (Gel-Cur-M). By orthotopically injecting the Gel-Cur-M to sciatic nerves of mice with chronic constriction injuries, we found that the bioactive components could remain on the nerves for at least 21 days. In addition, the Gel-Cur-M exhibited superior functions compared to Gel and Cur-M alone, which includes ameliorating hyperalgesia while simultaneously improving locomotor and muscular functions after the nerve injury. This could stem from in situ anti-inflammation, antioxidation, and nerve protection. Furthermore, the Gel-Cur-M also showed extended beneficial effects for preventing the overexpression of TRPV1 as well as microglial activation in the lumbar dorsal root ganglion and spinal cord, respectively, which also contributed to its analgesic effects. The underlying mechanism may involve the suppression of CC chemokine ligand-2 and colony-stimulating factor-1 in the injured sensory neurons. Overall, this study suggests that orthotopic injection of the Gel-Cur-M is a promising therapeutic strategy that especially benefits patients with peripheral neuropathy who require surgical interventions.


Assuntos
Curcumina , Neuralgia , Camundongos , Animais , Hidrogéis , Portadores de Fármacos , Micelas , Neuralgia/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...